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Graphical approaches have been proposed in the literature for testing hypotheses on multiple endpoints
by recycling significance levels from rejected hypotheses to unrejected ones. Recently, they have been
extended to group sequential procedures (GSPs). Our focus in this paper is on the allocation of recycled
significance levels from rejected hypotheses to the stages of the GSPs for unrejected hypotheses. We
propose a delayed recycling method that allocates the recycled significance level from Stage r onward,
where r is prespecified. We show that r cannot be chosen adaptively to coincide with the random stage
at which the hypothesis from which the significance level is recycled is rejected. Such an adaptive GSP
does not always control the FWER. One can choose r to minimize the expected sample size for a given
power requirement. We illustrate how a simulation approach can be used for this purpose. Several
examples, including a clinical trial example, are given to illustrate the proposed procedure.
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1 Introduction

Bretz et al. (2009) and Burman et al. (2009) proposed graphical approaches for testing multiple hy-
potheses using weighted Bonferroni tests, which recycle significance levels from rejected hypotheses to
unrejected ones. Maurer and Bretz (2013) extended these approaches to group sequential procedures
(GSPs). They did not explicitly address the problem of the timing of the allocation of recycled signifi-
cance level but Maurer in a personal communication to us pointed out that by choosing an appropriate
family of error spending functions in their method any desired allocation can be achieved.

Ye et al. (2013) considered the significance level allocation problem. For ease of explanation, consider
testing two null hypotheses, H1 and H2, corresponding to two primary endpoints using two inter-linked
GSPs with a Bonferroni split, α1 and α2, of the overall significance level α. If H1 is rejected before H2
then α1 is recycled to H2 and it is tested at the full α1 + α2 = α level with a corresponding modified
boundary. Ye et al. (2013) proposed two methods for modifying the boundary. The first method, which
they called the group sequential Holm variable (GSHv) procedure, allocates the recycled significance
level to all stages, thus modifying the entire boundary of the GSP. The second method, which they
called the group sequential Holm fixed (GSHf) procedure, allocates the recycled significance level only
to the final stage, thus modifying only the final critical constant.

GSHv allocates a portion of the recycled significance level to the stages prior to recycling (unless
recycling takes place at the first stage) and these stages cannot be revisited. The reason is that if one
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modifies the critical boundaries of previous stages it may turn out at a later stage that the hypotheses
could have been rejected at an earlier stage. This can lead to contradiction since the decision should
be based on the cumulative data until the current stage. Therefore GSHv does not exploit the full
potential of power gains due to recycling of the significance level. On the other hand, the power gain
associated with the GSHf procedure is realized only if the trial continues to the final stage.

In a sense, GSHv assumes that recycling occurs at the first stage while GSHf assumes that recycling
occurs at the final stage. We propose to strike a balance between these two extremes by assuming that
recycling occurs at some specified stage r (1 ≤ r ≤ m) where m is the total number of stages. We refer
to r as the common planned recycling stage for both hypotheses. Just as GSHv modifies the boundary
according to r = 1 and GSHf modifies the boundary according to r = m regardless of when the actual
recycling occurs, the same is true for the proposed procedure. We will denote the GSP with planned
recycling stage r by GSP(r). Using this notation, the GSHv procedure will be denoted by GSP(1) and
the GSHf procedure by GSP(m).

Let s denote the observed stage at which either hypothesis is rejected and the significance level
assigned to it is recycled to the other hypothesis. If neither hypothesis is rejected in the trial then we can
set s > m. We refer to s as the actual recycling stage. The critical boundary of the unrejected hypothesis
is modified at stage u = max(r, s), which we refer to as the effective recycling stage for that hypothesis.
Note that for the GSHv procedure u = s and for the GSHf procedure u = m if s ≤ m.

The error spending function (e.s.f.) approach of Lan and DeMets (1983) does not require specification
of the number or the times of the interim analyses (stages). In that case, we will replace r by the
corresponding time as discussed in Section 3.2. Strictly speaking, the notation GSP(r) is applicable
only when the number and times of stages are specified but we will also use it when the e.s.f. approach
is used to calculate the modified boundaries of the GSP upon recycling.

One may ask: why not choose r = s so that the resulting GSP modifies the boundary exactly at the
actual recycling stage and thus fully utilizes the recycled significance level? We will show in Section 4
that such an adaptive procedure does not always satisfy the strong familywise error rate (FWER)
control requirement (Hochberg and Tamhane 1987):

FWER = P{Reject at least one true Hi} ≤ α

for any combination of the true and false Hi’s where α is specified global significance level.
The paper is organized as follows. Section 2 gives a brief review of the GSPs for a single endpoint.

Two methods for allocating the recycled significance level, the boundary method and the e.s.f method,
are presented in Section 3. It is shown in Section 4 that the adaptive version of GSP(r) does not
always control the FWER. Section 5 gives sample size comparisons for different choices of r and GSP
boundaries. Section 6 incorporates the allocation methods in the graphical approach of Bretz et al.
(2009) for testing multiple hypotheses and discusses the choice of r via simulation. The paper concludes
with summary remarks in Section 7. Proofs of the results are given in the appendix. R programs for
various computations and simulations are given in supplementary materials.

2 Group sequential procedures for a single hypothesis

GSPs have been studied in the literature for nearly 40 years starting with Armitage (1975). Pocock
(1977) and O’Brien and Fleming (1979) proposed two popular GSPs that we will denote by POC
and OBF, respectively. The books by Jennison and Turnbull (2000) and Whitehead (1997) provide
comprehensive overviews of this area. Here, we give a brief review for the single hypothesis case mainly
to set up the background and notation for the present paper.

Consider testing a null hypothesis H0 : θ = 0 against an upper one-sided alternative using a GSP
with m ≥ 2 stages. Denote by Ik the cumulative statistical information available up to Stage k. Let Zk
denote the test statistic and tk = Ik/Im denote the information time or fraction at Stage k (1 ≤ k ≤ m)
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and let t0 = 0; thus 0 = t0 < t1 < · · · < tm = 1. We assume that the test statistics Z1, . . . , Zm follow
an m-variate normal distribution with E (Zk) = θ

√Ik, Var(Zk) = 1 and Corr(Zk, Z�) = √
tk/t� for

1 ≤ k < � ≤ m. In this normal theory setup, Ik is proportional to the cumulative sample size up to
Stage k.

Consider a GSP with a significance level γ that rejects H0 at Stage k if Zj ≤ c j (γ ) (1 ≤ j ≤ k − 1)

and Zk > ck(γ ). (We use the notation γ for a significance level instead of the usual α since α is
used to denote the overall significance level at which the FWER is controlled when testing multiple
hypotheses.) The critical constants ck(γ ) are chosen to satisfy the following equation:

PH0

{
Z1 ≤ c1(γ ), . . . , Zm ≤ cm(γ )

} = 1 − γ . (1)

For the POC boundary, c1(γ ) = · · · = cm(γ ) = cPOC(γ ) while for the OBF boundary, ck(γ ) =
cOBF(γ )

√
1/tk (1 ≤ k ≤ m) where the constants cPOC(γ ) and cOBF(γ ) are chosen to satisfy (1).

Lan and DeMets (1983) proposed a flexible approach to constructing GSPs based on e.s.f.’s. We
denote the e.s.f. by ε(γ , t), which is a monotone nondecreasing function of time t ∈ [0, 1] with ε(γ , 0) =
0 and ε(γ , 1) = γ . If interim analyses have been performed previously at times t1, . . . , tk−1 then the
critical constant ck(γ ) for the kth analysis can be computed from the e.s.f. by first calculating the
so-called spent level:

αk(γ ) = ε(γ , tk) − ε(γ , tk−1) (2)

and then solving for ck(γ ) recursively from the following set of equations:

αk(γ ) = PH0

⎡
⎣k−1⋂

j=1

{Zj ≤ c j (γ )}
⋂

{Zk > ck(γ )}
⎤
⎦ (1 ≤ k ≤ m). (3)

If there are m total analyses then
∑m

k=1 αk(γ ) = γ .
In the sequel we will require the critical constants to satisfy the monotonicity condition (Liu and

Anderson, 2008):

γ ′ > γ =⇒ ck(γ
′) ≤ ck(γ ) for all k, (4)

so that if the significance level increases then the group sequential boundary shrinks enabling easier
rejection of H0. The following sufficient condition on the underlying e.s.f to ensure (4) was given by
Maurer and Bretz (2013):

γ ′ > γ =⇒ αk(γ
′) ≥ αk(γ ) for all k. (5)

The e.s.f.’s of the POC and OBF boundaries are approximately given by

εPOC(γ , t) ≈ γ ln{1 + (e − 1)t} and εOBF(γ , t) ≈ 2�(−zγ /2/
√

t),

where �(·) is the standard normal cumulative distribution function and �(−zγ ) = γ . We use the e.s.f.
of the POC boundary in the examples later. It can be shown that it satisfies the monotonicity condition
(5).

3 Methods for allocating recycled significance levels

We next discuss two methods, the boundary method and the e.s.f. method, for allocating the significance
level transferred from a rejected hypothesis to the stages of the GSP of an unrejected hypothesis. In the
boundary method, a desired parametric form can be specified for boundaries while the e.s.f. method
is more flexible as noted before. To make the essential ideas clear, we will focus attention on a single
unrejected hypothesis H0 : θ = 0, which is tested using an m-stage GSP(r) initially at a significance
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level γ . Due to recycling the significance level from another rejected hypothesis, the level γ is increased
to γ ′. The additional significance level γ ′ − γ is allocated only to stages k ≥ r. It should be noted that
the recycling method must be independent of the recycling sequence and therefore can be implicitly
interpreted as a consonant weighted Bonferroni test as in Bretz et al. (2009) and Burman et al. (2009).

3.1 Boundary method

Let (c1(γ ), . . . , cm(γ )) denote the initial γ -level group sequential boundary for testing H0 that satisfies
(1). Then the delayed recycling boundary (c1(γ ), . . . , cr−1(γ ), c′

r(γ
′), . . . , c′

m(γ ′)) is calculated from the
following equation:

PH0
{Z1 ≤ c1(γ ), . . . , Zr−1 ≤ cr−1(γ ), Zr ≤ c′

r(γ
′), . . . , Zm ≤ c′

m(γ ′)} = 1 − γ ′, (6)

where c′
k(γ

′) ≤ ck(γ ) for k = r, . . . , m. Note that the critical constants c′
k(γ

′) also depend on γ but we
have suppressed this dependence for notational simplicity.

We may choose c′
k(γ

′) to have the same form as the initial boundary. Thus, if the initial boundary
is OBF then we can set c′

k(γ
′) = c′

OBF(γ ′)
√

1/tk and if the initial boundary is POC then we can set
c′

k(γ
′) = c′

POC(γ ′) for k = r, . . . , m. In both cases, (6) involves a single unknown constant, c′
OBF(γ ′) or

c′
POC(γ ′), for which it can be solved.

The boundaries for two choices of the planned recycling stage, r < r′, can be compared if both
boundaries have the same parametric form. For example, we may require the POC type delayed
recycling boundaries for both cases. Denote by

(c1(γ ), . . . , cr−1(γ ), c′
r(γ

′), . . . , c′
m(γ ′)) and (c1(γ ), . . . , cr′−1(γ ), c

′′
r′ (γ

′), . . . , c
′′
m(γ ′))

the delayed recycling boundaries calculated using (6) for r and r′, respectively. Then the critical
constants of the two boundaries are equal for k = 1, . . . , r − 1 and it is easy to see that c′

k(γ
′) ≤ ck(γ )

for k = r, . . . , r′ − 1 and c′
k(γ

′) ≥ c
′′
k(γ

′) for k = r′, . . . , m.
As an example of the above, consider GSP(r) boundaries for r = 1 and r = m. The GSP(1) bound-

ary equals (c1(γ
′), . . . , cm(γ ′)), which is simply the initial boundary but with γ ′ level. The GSP(m)

boundary equals (c1(γ ), . . . , cm−1(γ ), c′
m(γ ′)), which is given by (6) with r = m. Then ck(γ

′) ≤ ck(γ )

for 1 ≤ k ≤ m − 1 and cm(γ ′) ≥ c′
m(γ ′).

3.2 Error spending function method

In the e.s.f. method instead of specifying the planned recycling stage r, we specify the planned recycling
time t∗ ∈ (0, 1) such that recycling can take place only at any time t > t∗. This is analogous to specifying
r, which implies that recycling can take place only after stage r − 1. Thus the relationship between the
two methods is tr−1 = t∗.

In this method, we seek an e.s.f. ε′(γ , γ ′, t|t∗), which satisfies the following conditions for a given
initial e.s.f. ε(γ , t), γ ′ > γ and t∗:

(i) ε′(γ , γ ′, t|t∗) satisfies the monotonicity condition (5).
(ii) ε′(γ , γ ′, t|t∗) = ε(γ , t) for 0 ≤ t ≤ t∗.

(iii) ε′(γ , γ ′, 1|t∗) = γ ′ > γ = ε(γ , 1).

We refer to such an e.s.f. as a delayed recycling e.s.f.
Many choices are possible for ε′(γ , γ ′, t|t∗). We choose the following:

ε′(γ , γ ′, t|t∗) =
{

ε(γ , t) for 0 ≤ t ≤ t∗
ε(γ , t∗) + η(γ , γ ′, t|t∗) for t∗ < t ≤ 1,

(7)
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where η(γ , γ ′, t|t∗) is a nondecreasing function of t such that η(γ , γ ′, t∗|t∗) = 0 and η(γ , γ ′, 1|t∗) =
γ ′ − ε(γ , t∗).

A possible choice for η(γ , γ ′, t|t∗) is

η(γ , γ ′, t|t∗) = ε∗(γ ∗, t) − ε∗(γ ∗, t∗) (8)

where ε∗(γ ∗, t) is an arbitrary e.s.f. and γ ∗ is the solution to the equation

γ ∗ − ε∗(γ ∗, t∗) = γ ′ − ε(γ , t∗). (9)

If we choose ε∗(γ ∗, t) to be the initial e.s.f. ε(γ ∗, t) then it can be shown that ε′(γ , γ ′, t|t∗) satisfies the
monotonicity condition (5).

From (8) we see that ε′(γ , γ ′, t∗|t∗) = ε(γ , t∗) and from (9) we see that

ε′(γ , γ ′, 1|t∗) = ε(γ , t∗) + η(γ , γ ′, 1|t∗)

= ε(γ , t∗) + ε∗(γ ∗, 1) − ε∗(γ ∗, t∗)

= ε(γ , t∗) + γ ∗ − ε∗(γ ∗, t∗)

= γ ′.

Another example of ε∗(γ ∗, t) is the linear e.s.f. ε∗(γ ∗, t) = γ ∗t. It is easy to see that for this choice,
γ ∗ = (γ ′ − ε(γ , t∗))/(1 − t∗).

Remark: A referee suggested an alternative form for the delayed recycling e.s.f. given by

ε′(γ , γ ′, t|t∗) =
{

ε(γ , t) for 0 ≤ t ≤ t∗
ε(γ , t)η(γ , γ ′, t|t∗) for t∗ < t ≤ 1,

where

η(γ , γ ′, t|t∗) = γ (1 − t) + γ ′(t − t∗)
γ (1 − t∗)

. (10)

Note that this e.s.f. uses a multiplicative factor rather than an additive factor used in (7). This factor
scales up ε(γ , t) linearly in t for t > t∗.

Although our proposal (7) requires the computation of γ ∗, it is more flexible in that one can choose
any e.s.f. (subject to the monotonicity condition (5)) for ε∗(γ ∗, t) in (8). Therefore we will follow our
proposal.

For a given analysis k at time tk (k = 1, . . . , m), the delayed recycling boundary (c′
1(γ

′), . . . , c′
m(γ ′))

can be calculated by using

α′
k(γ

′) = ε′(γ , γ ′, tk|t∗) − ε′(γ , γ ′, tk−1|t∗) (1 ≤ k ≤ m). (11)

in (3) in place of αk(γ ). Let t∗ be the time of the (r − 1)th analysis and s be the actual recycling stage.
Then the effective boundary is given by (c1(γ ), . . . , cu−1(γ ), c′

u(γ
′), . . . , c′

m(γ ′)) where u = max(r, s)
is the effective recycling stage. If r ≥ s then the effective boundary is the same as the delayed recycling
boundary and there is no loss of significance level although it is not always recycled at the actual
recycling stage. This is always the case when r = m. On the other hand, if r < s then the significance
level recycled to stages r, r + 1, . . . , s − 1 is wasted since those stages cannot be revisited. This is the
case when r = 1 and s > 1.

Figure 1 shows the e.s.f.’s of GSP(r) for r = 1, 2, 3 and m = 3, γ = 0.025, γ ′ = 0.05 when the POC
boundary is used both before and after the rth stage. It is seen that GSP(r) allocates the largest increase
in the e.s.f. at the rth stage.
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Figure 1 Error spending functions for GSP(1), GSP(2), and GSP(3) using the POC boundary (m = 3,

γ = 0.025, γ ′ = 0.05).

3.3 Example

Suppose we want to test null hypotheses H1 and H2 on two primary endpoints against upper one-sided
alternatives. Assume that the nominal level α = 0.05 is split equally between them; thus if H1 is rejected
at the 0.025 level then H2 is tested at the full 0.05 level and vice versa. A GSP with three stages (two
interim analyses and one final analysis) is used for each hypothesis with the interim analyses carried
out after 1/3 and 2/3 of the total number of patients are observed.

Suppose that H1 is rejected at Stage 2 but H2 is not yet rejected, and the POC boundary is used to test
H2. For α = 0.025, this boundary is (2.289, 2.289, 2.289). We now show how to calculate the delayed
recycling and effective boundaries for H2 for r = 1, 2, 3 using the boundary and the e.s.f. methods.
Multivariate normal probabilities needed in these calculations were evaluated using the R package
mvtnorm by Genz et al. (2014) that is based on the works of Miwa et al. (2003) and Genz and Bretz
(2009).

Boundary Method: For r = 1, the delayed recycling boundary is simply the 0.05-level POC boundary,
which is (1.992, 1.992, 1.992). Since s = 2, the effective boundary for GSP(1) is (2.289, 1.992, 1.992).

For r = 2, we solve for c′
2(0.05) = c′

3(0.05) = c′(0.05) from P{Z1 ≤ 2.289, Z2 ≤ c′(0.05), Z3 ≤
c′(0.05)} = 0.95. The solution is c′(0.05) = 1.889. So the delayed recycling and effective boundaries
for GSP(2) are both (2.289, 1.889, 1.889).

For r = 3, we solve for c′
3(0.05) from P{Z1 ≤ 2.289, Z2 ≤ 2.289, Z3 ≤ c′

3(0.05)} = 0.95. The so-
lution is c′

3(0.05) = 1.737. So the delayed recycling and effective boundaries for GSP(3) are both
(2.289, 2.289, 1.737).

Error Spending Function Method: Note that for t ≤ t∗ = (r − 1)/3 (r = 1, 2, 3), the delayed recycling
e.s.f. is the same as the initial POC e.s.f., which is 0.025 ln{1 + (e − 1)t}. For t > t∗ = (r − 1)/3, we
compute the delayed recycling e.s.f. using (7) where η(γ , γ ′, t|t∗) is given by (8). For ε∗(γ ∗, t) we use
the POC e.s.f. γ ∗ ln{1 + (e − 1)t}.

For r = 1, since t∗ = 0 we have ε(γ , t∗) = 0 and so η(0.025, 0.05, t|0) = γ ∗ ln{1 + (e − 1)t}
where γ ∗ = γ ′ = 0.05 from (9). Thus, ε′(0.025, 0.05, t|0) = 0.05 ln{1 + (e − 1)t} for t > 0 that is
the 0.05-level POC e.s.f. Therefore the delayed recycling boundary is the 0.05-level POC boundary
(1.992, 1.992, 1.992), the same as that obtained using the boundary method. Since s = 2, the effective
boundary for GSP(1) is (2.289, 1.992, 1.992). If we use the method proposed by the referee then from
(10) we get η(0.025, 0.05, t|0) = 1 + t. Therefore ε′(0.025, 0.05, t|0) = 0.025(1 + t) ln{1 + (e − 1)t},
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which is not the POC e.s.f. but some nonstandard e.s.f. So the delayed recycling boundary will not be
the simple 0.05-level POC boundary.

For r = 2, we first calculate ε(0.025, 1/3) = 0.025 ln{1 + (e − 1)(1/3)} = 0.0113. To evaluate the
delayed recycling e.s.f. (7) using (8), we need to solve the following equation obtained from (9) for γ ∗:

γ ∗ − γ ∗ ln{1 + (e − 1)(1/3)} = 0.05 − 0.025 ln{1 + (e − 1)(1/3)}.

The solution can be checked to be γ ∗ = 0.0707. Hence

η(0.025, 0.05, 2/3|1/3) = 0.0707 ln{1 + (e − 1)(2/3)} − 0.0707 ln{1 + (e − 1)(1/3)} = 0.0220.

Therefore the spent levels are α′
2(0.05) = 0.0220 and α′

3(0.05) = 0.05 − 0.0220 − 0.0113 = 0.0167. So
c′

2(0.05) and c′
3(0.05) can be determined recursively from the following two equations:

P{Z1 ≤ 2.289, Z2 > c′
2(0.05)} = 0.0220,

the solution to which is c′
2(0.05) = 1.925 and

P{Z1 ≤ 2.289, Z2 ≤ 1.925, Z3 > c′
3(0.05)} = 0.0167,

the solution to which is c′
3(0.05) = 1.865. So the delayed recycling and effective boundaries for GSP(2)

are both (2.289, 1.925, 1.865). Note that although we used the POC e.s.f. to obtain the delayed recycling
e.s.f., we did not get c′

2(0.05) = c′
3(0.05).

Finally for r = 3, the GSP(3) boundary is the same as that obtained using the boundary method
that is (2.289, 2.289, 1.737).

Note that for r = 1 and r = m the e.s.f. method always gives the same delayed recycling boundary as
the boundary method gives regardless of the choice of the delayed e.s.f. We will focus on the boundary
method in the rest of the paper.

4 Adaptive choice of planned recycling stage r

It is tempting to make GSP(r) adaptive by setting r = s instead of prespecifying it. This leads to a
random adaptive boundary for H2 depending on when H1 is rejected. Although GSP(s) fully utilizes
the recycled significance level, it does not control the FWER in general. This result could be viewed as
a generalization of the result observed by Hung et al. (2007) and proved by Tamhane et al. (2010) who
showed that in a hierarchical test of a primary and a secondary endpoint, the FWER is not always
controlled if the primary hypothesis is rejected at an interim analysis and the secondary hypothesis is
tested at the full level α at the same stage.

For convenience of notation and explanation, the following propositions are given only for two null
hypotheses, H1 : θ1 = 0 and H2 : θ2 = 0, which are assumed to be tested with a Bonferroni split of the
significance level α. Let GSP(s) denote the adaptive version of the GSP(r) procedure, which sets r = s
where s is the actual recycling stage. First note that GSP(s) weakly controls the FWER under H1

⋂
H2

because of the Bonferroni split of α. Therefore in the following propositions we consider the partial
null hypothesis: H1 is false and H2 is true.

Proposition 4.1. GSP(s) controls the FWER at level α if the test statistics for the two hypotheses are
independent.

Proposition 4.2. GSP(s) does not control the FWER at level α if the test statistics are positively
correlated.
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Table 1 Maximum FWER as a function of ρ for testing H1 and H2 using a two-stage GSP when H1
is false and H2 is true (γ = 0.025, γ ′ = 0.05).

ρ 0.0 0.2 0.4 0.6 0.8 1.0
max FWER 0.0500 0.0506 0.0515 0.0527 0.0545 0.0603

The analytical proof in the dependence case is given for the limiting case of correlation ρ = 1 between
the test statistics for H1 and H2. In a two-stage GSP, no matter which boundaries are used for H1 and
H2, the FWER > α when ρ = 1 if δ1 = c11/

√
t1, where δ1 = θ1

√Im is the drift parameter for H1 and
c11 is the critical constant for the first stage for H1 before recycling occurs. But in fact numerical results
show that for every ρ > 0, max FWER > α where the maximum is taken over δ1. This numerical study
is described in the following section.

4.1 Numerical study of FWER of adaptive GSP

Consider a two-stage GSP in which the OBF boundary is used for H1 and the POC boundary is used
for H2 with γ = 0.025 and γ ′ = 0.05. Denote by GSPi the initial boundary (for γ = 0.025) and by
GSPi(r) the delayed recycling boundary (for γ ′ = 0.05) for hypothesis Hi (i = 1, 2) using the planned
recycling stage r = 1, 2. These boundaries can be calculated using the boundary method as

GSP1 = (2.7965, 1.9774), GSP1(1) = (2.3729, 1.6779), GSP1(2) = (2.7965, 1.6507)

and

GSP2 = (2.1782, 2.1782), GSP2(1) = (1.8754, 1.8754), GSP2(2) = (2.1782, 1.7145).

The adaptive GSP operates as follows. Suppose that H1 is rejected first using GSP1 at stage s then
H2 is tested using GSP2(s) (s = 1, 2). Similarly, if H2 is rejected first using GSP2 at stage s then H1 is
tested using GSP1(s) (s = 1, 2). If neither hypothesis is rejected then no recycling takes place and both
hypotheses are accepted.

We numerically evaluated the FWER of this procedure for ρ = 0.0(0.1)1.0 and δ1 = 0.00(0.01)5.00.
These numerical results are graphed in Fig. 2 and the max FWER values for ρ = 0.0(0.2)1.0 are given
in Table 1. Observe that max FWER > 0.05 for all ρ > 0 and could be as high as 0.0603 for ρ = 1.
Furthermore, FWER → 0.05 as δ1 → ∞ for all ρ ≥ 0.

It is curious to note that the FWER curve for ρ = 1 has a plateau for a small interval of δ1 with
FWER = 0.05. In the following proposition we give a formula for this interval.

Proposition 4.3. When ρ = 1, the FWER of the adaptive two-stage GSP equals α for δ1 ∈ [L,U ],
where L and U are given by

L = max{0, c2(GSP1) − c2(GSP2(2))} and U = max
{

0, t−1/2
1 [c1(GSP1) − c1(GSP2)]

}
.

In fact, when δ1 ∈ [L,U ], the FWER of the adaptive GSP2(s) is the same as that of GSP2(2).

Substituting the values of the necessary critical constants in the above equation for α = 0.05 we get

L = max{0, 1.9774 − 1.7145} = 0.2629 and U = max{0,
√

2(2.7965 − 2.1782)} = 0.8744.
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Figure 2 FWER as a function of ρ and the drift parameter δ1 for H1 when testing two hypotheses
using a two-stage adaptive GSP (γ = 0.025, γ ′ = 0.05).

5 Performance comparisons for a single hypothesis

In order to gain a better understanding of the differences between the performances of GSP(r) for
different values of r, we will consider the problem of testing a single hypothesis H0 : θ = 0 using
an m-stage GSP. Assume that the hypothesis is initially tested at level γ = 0.025 and an additional
significance level 0.025 is propagated to it at some stage s during the course of the trial, raising the
level to γ ′ = 0.05 for the remainder of the trial. This setup simplifies the comparison since the factors
such as the choices of the e.s.f.’s for other hypotheses, their drift parameters, etc. do not complicate the
comparison. As measures of performance we will study the expected and maximum sample sizes. The
power to reject H0 is an increasing function of the maximum sample size M and so we do not study it
here.

Denote the maximum or planned total sample size by M and the expected sample size by E (N).
Assume that the test statistics Z1, . . . , Zm have an m-variate normal distribution with E (Zk) = θ

√
Mtk,

Var(Zk) = 1 and Corr(Zk, Z�) = √
tk/t� for 1 ≤ k < � ≤ m. For given m and the group sequential

boundary (c1, . . . , cm), we can determine M under a specified power requirement that the probability
of rejecting H0 : θ = 0 is at least 1 − β when the true parameter equals θ > 0. Thus, M is the smallest
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Table 2 Maximum and expected sample sizes (expressed as percentages of the fixed sample size) for
GSP(r) for all possible outcomes s (m = 3, γ = 0.025, γ ′ = 0.05, Power 1 − β = 0.80 at θ = 1).

Initial boundary r s = 1 s = 2 s = 3

M E (N) M E (N) M E (N)

OBF 1 102.7 83.7 102.8 85.4 104.6 91.5
2 102.5 85.1 102.5 85.1 104.4 91.3
3 100.4 88.4 100.4 88.4 100.4 88.4

POC 1 118.4 80.7 120.5 86.5 124.6 92.7
2 111.6 80.6 111.6 80.6 116.6 88.5
3 104.8 81.9 104.8 81.9 104.8 81.9

total sample size that satisfies

P(Z1 ≤ c1, . . . , Zm ≤ cm|θ ) = β

for given r and s. In practice, M is rounded up so that the group sample sizes are integers, but in the
calculations presented here we have left M to be the exact fractional solution to the above equation.
Then E (N) is given by

E (N) = M
m−1∑
k=1

tkP(GSP stops and rejects H0 at Stage k|θ )

+ M × P(GSP stops at Stage m|θ )

= M
m−1∑
k=1

tkP(Z1 ≤ c1, . . . , Zk−1 ≤ ck−1, Zk > ck|θ )

+ M × P(Z1 ≤ c1, . . . , Zm−1 ≤ cm−1|θ ).

We calculated M and E (N) with the OBF and POC group sequential boundaries with equal group sizes
for m = 2, 3, 4 and θ = 0.5, 1, 1.5. In each case, we considered the GSP(r) procedure for r = 1, . . . , m
and for all possible outcomes s = 1, . . . , m. The boundary is changed at the effective recycling stage
u = max(r, s) from level γ = 0.025 to level γ ′ = 0.05. For lack of space, only the results for m = 3 and
θ = 1 are presented in Table 2.

We can draw the following conclusions from these results.

1. To guarantee the power of 1 − β, the maximum sample size M decreases with r (for any given
s). From this we can infer that GSP(1) is the least powerful and GSP(m) is the most powerful
with a common maximum sample size.

2. Although r = m maximizes the power, it also increases the expected sample size since the power
for rejecting H0 in an earlier stage is not increased as no significance level is propagated to those
stages. This situation is similar to comparing a group sequential trial with a fixed maximum
sample size to a nonsequential trial. The latter has more power but a larger expected sample
size.

3. For the OBF boundary, the minimum of E (N) is achieved for given s when r = s, i.e. when the
planned recycling stage coincides with the actual recycling stage. This is also true for the POC
boundary except for s = 1 when the minimum is achieved at r = 2.
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4. For the OBF boundary, r = m yields the largest E (N) over different choices of r if s < m that
is a drawback of choosing r = m although it yields the smallest M. On the other hand, for the
POC boundary, GSP(1) has the largest E (N) if s > 1.

5. The expected sample size E (N) of GSP(r) for each r is constant for s ≤ r and then increases
for s > r.

6. If we apply the minimax criterion to choose r to minimize the maximum E (N) over all outcomes
s for each r, r = 3 is the optimum choice for both the OBF and POC boundaries.

6 Multiple hypotheses

Next, we consider the problem of testing a family of n ≥ 2 null hypotheses, H1, . . . , Hn, using a
GSP with m ≥ 2 stages. The hypotheses could be unordered, e.g. hypotheses concerning primary or
coprimary endpoints or they could be hierarchically ordered as primary and secondary. Previous
works on GSPs for multiple unordered primary endpoints include Pocock et al. (1987), Tang and
Geller (1999), and Liu and Anderson (2008). GSPs for primary and secondary endpoints have been
studied by Glimm et al. (2010) and Tamhane et al. (2010).

6.1 Algorithm for graphical implementation

We now give an algorithm for the closed procedure using the graphical approach with recycling
proposed by Maurer and Bretz (2013). We provide additional steps necessary for calculation of the
delayed recycling boundary since we use test statistics Zik instead of their p-values. The algorithm
involves choosing initial group sequential boundaries or their associated e.s.f.’s εi(γ , t) and assigning
a local weight wi(I ) to each Hi, i ∈ I ⊆ {1, . . . , n} where 0 ≤ wi(I ) ≤ 1 and

∑
i∈I wi(I ) ≤ 1. The local

test of the intersection hypothesis H (I ) is the weighted Bonferroni test that rejects H (I ) if at least one
Hi, i ∈ I is rejected at level wi(I )α. In the GSP this test is applied at each analysis after recalculating the
set I , the weights wi(I ), the test statistics Zik and the critical constants cik according to the algorithm
below. The weights are assumed to satisfy the following monotonicity condition due to Hommel et al.
(2007):

wi(I ) ≤ wi(J) for all i ∈ J ⊆ I ⊆ {1, . . . , n}.

Maurer and Bretz (2013) have shown that if the critical constants of the closed procedure with group
sequential boundaries satisfy the monotonicity condition (4) of Liu and Anderson (2008) then it is
consonant and hence has a stepwise shortcut at each stage.

In the graphical approach the hypotheses are represented as nodes in a directed graph with transition
weight gi j ≥ 0 on the arc connecting Hi to Hj for each pair i �= j subject to

∑
j gi j ≤ 1 for each Hi

where gi j is the fraction of the significance level assigned to Hi that is recycled to Hj if Hi is rejected.
The hypothesis Hi is removed from the graph and the gi j are updated.

Algorithm
Step 0: Set I = {1, . . . , n}. Assign weights wi = wi(I ) to all hypotheses Hi, i ∈ I such that wi ≥ 0

and
∑

i∈I wi ≤ 1. Also assign transition weights gi j = gi j (I ) ≥ 0 to directed edges from Hi
to Hj (i, j ∈ I, i �= j) such that

∑
j �=i gi j ≤ 1 for all i ∈ I . Assume that the planned recycling

stages ri or planned recycling times t∗
i are specified for all Hi. Calculate the critical boundary

(ci1, . . . , cim) at level γ 0
i = wiα for each Hi, i ∈ I . Set γi = γ 0

i and k = 1.
Stage k:

Step 1: Compute the test statistics Zik for i ∈ I .
Step 2: If there exists an i ∈ I such that Zik > cik then reject Hi and proceed to Step 3; otherwise

go to Step 6.
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Step 3: Update the graph:

I → I \ {i},
wj →

{
wj + wigi j j ∈ I,
0 otherwise,

g jh →
{

(g jh + g jigih)/(1 − g jigi j ) j, h ∈ I, j �= h, g jigi j < 1,

0 otherwise.

Step 4: Calculate the new critical constants c′
i j at level γ ′

i = wiα for all i ∈ I using either the
boundary method (Eq. (6)) or the e.s.f. method (Eqs. (11) and (3)).

Step 5: Calculate the effective boundary by setting ci j → c′
i j where j = max(ri, k), . . . , m. Go

to Step 2.
Step 6: If |I| ≥ 1 and k < m then set k → k + 1 and go to Step 1 of Stage k; otherwise stop.

The following points should be noted about this algorithm.

1. Since the GSP(ri) is used for Hi, the critical constants in stages 1, . . . , ri − 1 are unchanged in
Step 4 from those in Step 0.

2. The algorithm allows for more than one hypothesis to be tested and rejected at any stage, each
time recycling the corresponding significance level and modifying the critical boundaries of
the remaining unrejected hypotheses. In this case, the significance level may increase from the
initial level γ to γ ′ and then to γ ′′ and so on. It is clear from (7) that the delayed recycling
boundary at level γ ′′, (c1(γ ), . . . , cr−1(γ ), c′′

r (γ
′′), . . . , c′′

m(γ ′′)), does not depend on γ ′ but only
upon γ and γ ′′. Therefore the same is true for the effective boundary. As a result, we only need
to save in memory the last set of the critical constants based on the last increased level when
proceeding from one stage to the next.

3. Another possibility is that the significance level for some hypothesis could increase from γ to
γ ′ > γ at Stage k′ and then to γ ′′ > γ ′ at Stage k′′ > k′ due to rejections of other hypotheses
at each of the stages. It is clear from the above point that the delayed recycling boundary at γ ′′
does not depend on γ ′. But the effective boundary at γ ′′ uses the critical constants at γ ′ for
Stage k′ onwards to k′′ − 1 since in Step 5 only the constants at the current and future stages
are updated without revisiting previous stages.

4. In practice, it is usually the Data Monitoring Committee (DMC) that makes the decision on
stopping or continuing the trial given the evidence on efficacy (or futility) and safety. This
option could be incorporated in Step 6.

6.2 Example

To illustrate the application of the proposed GSP(r) procedure to multiple hypotheses we use the
diabetes trial example of Maurer and Bretz (2013) in which they used GSP(1). This is a three-stage
trial with equal group sizes; thus (t1, t2, t3) = (1/3, 2/3, 1). It compares a high and a low dose of a
drug against placebo (on top of the standard-of-care) on two endpoints: HbA1c and body weight.
HbA1c is the primary endpoint while body weight is the secondary endpoint. Thus there are four null
hypotheses. Within each dose the secondary null hypothesis cannot be tested unless the primary null
hypothesis is rejected. Denote the null hypotheses on HbA1c for low and high doses by H1 and H2
and those on body weight by H3 and H4, respectively. Thus H3 cannot be tested unless H1 is rejected.
Similarly, H4 cannot be tested unless H2 is rejected.

The initial graph for this testing problem is shown in Fig. 3A. Suppose that the nominal level
α = 0.025 is split equally, α1 = α2 = 0.0125, between H1 and H2. If a primary hypothesis is rejected
then its associated significance level is split equally between the other primary hypothesis and the
descendent secondary hypothesis of the rejected primary hypothesis. If both hypotheses under one
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Figure 3 A graphical representation of GSP(2) for the diabetes trial example.

dose level are rejected then the hypotheses under the other dose level can be tested at the full α = 0.025
level. We will use the POC boundaries for all four hypotheses instead of the OBF boundaries used in
the original example in order to illustrate the difference in the decisions reached with r = 1 and r = 2.
For hypothesis Hi, denote the test statistic at Stage k by Zik and the corresponding critical constant by
cik (1 ≤ i ≤ 4, 1 ≤ k ≤ 3). Assume that r = 2 is specified for all four hypotheses. The delayed recycling
boundaries are calculated using the boundary method. We will now walk through the example stage
by stage.

Stage 1: We have I1 = {1, 2, 3, 4} and (w1(I1), w2(I1), w3(I1), w4(I1)) = (0.5, 0.5, 0, 0). Suppose that
the test statistics are Z11 = 2.50, Z21 = 2.12, Z31 = 2.37, Z41 = 1.13. The POC boundary for α1 =
α2 = 0.0125 is (2.555, 2.555, 2.555). Thus neither H1 nor H2 can be rejected since both Z11 and Z21
are < 2.555. Hence H3 and H4 cannot be tested.

Stage 2: Suppose that the test statistics are Z12 = 2.84, Z22 = 2.39, Z32 = 2.61, Z42 = 1.55. Since
we are using the POC boundary and no hypotheses were rejected at Stage 1, the critical constants
at Stage 2 are unchanged: c12 = c22 = 2.555. Since Z12 > 2.555 we reject H1. Thus I2 = {2, 3, 4} and
(w2(I2), w3(I2), w4(I2)) = (0.75, 0.25, 0) using Algorithm 1. The transition parameters also change as
shown in Fig. 3B. The new significance levels are α2 = 0.01875 and α3 = 0.00625, respectively. Since
no significance level is transferred to H4, α4 = 0. The delayed recycling POC boundary using GSP(2)
can be calculated as (2.555, 2.339, 2.339) for H2 and (∞, 2.671, 2.671) for H3 where the first critical
constant is set equal to ∞ because initially α3 = 0. Since Z22 > 2.339 we reject H2. Thus one can test
H3 and H4 at Stage 2 at the full α = 0.025 level.
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Upon rejection of H2, I2 is updated to I2 = {3, 4} and (w3(I2), w4(I2)) = (0.5, 0.5). The resulting
graph along with its transition parameters is shown in Fig. 3C. From the symmetry of this graph it
follows that α3 = α4 = 0.0125. The delayed recycling POC boundary using GSP(2) can be calculated
as (∞, 2.421, 2.421) for both H3 and H4. Since Z32 > 2.421 we reject H3 and transfer its level to H4
that is then tested at α4 = 0.025. The resulting graph with a single node H4 is shown in Fig. 3D. The
new delayed recycling POC boundary can be calculated as (∞, 2.146, 2.146). Since Z42 < 2.146 we
cannot reject H4 and so the trial proceeds to Stage 3. At this point the DMC may decide to terminate
the trial to save resources since both primary hypotheses and one secondary hypothesis have been
rejected.

Note that if we had used r = 1, the delayed recycling POC boundaries at Stage 2 after rejecting H1
would have been (2.556, 2.403, 2.403) for H2 and (∞, 2.798, 2.798) for H3. So neither H2 nor H3 could
have been rejected at Stage 2. On the other hand, if we could have rejected H1 and/or H2 at Stage 1
then we could have tested their descendant secondary hypotheses H3 and/or H4 at that stage itself
instead of waiting until the second stage when r = 2 as in the present example.

6.3 Choice of r for multiple hypotheses

In this section, we illustrate how to choose r using simulation in a multiple hypotheses setting. The
example is too small to draw any general conclusions. Its purpose is merely to demonstrate the use of
simulation in selection of r.

To keep the discussion simple, we return to the example of two hypotheses with three-stage GSPs
from Section 3.3. Consider testing H1 and H2 each at level 0.025 initially. If H1 (H2) is rejected, H2
(H1) can be tested at level 0.05 using GSP(r). We assume the trial is stopped early for superiority only
if both hypotheses are rejected.

In practice, one could choose a different r for each hypothesis depending on when the other hypoth-
esis is likely to be rejected. For the sake of simplicity, we will choose a common r for both hypotheses.
Assume that we require 80% power for H1 (H2) under some true parameter θ1 (θ2). We studied various
combinations of θ1 and θ2 for different choices of the correlation ρ between the two endpoints, but here
we report the results only for ρ = 0.5 since the best choice of r was found to be relatively insensitive
to ρ although E (N) and M both depend on ρ. Tamhane et al. (2010) and Glimm et al. (2010) have
shown that different combinations of boundaries also affect the performance of a GSP. We considered
two combinations of boundaries for H1 and H2: OBF-OBF and OBF-POC. Under our assumptions,
we focused on the larger of the two E (N) required to reject H1 and H2 with 80% marginal power for
each. The choice of r was based on first minimizing E (N) and then on minimizing M. The sample sizes
M and E (N) for different combinations of (θ1, θ2) and boundaries are given in Table 3. The minimum
E (N) for each case is shown in bold.

7 Concluding remarks

We have focused on minimizing E (N) in this paper, but it may be noted that the differences in E (N)

are not large at least in this small example, and that other considerations could also be important.
In addition, the assumptions that lead to differences in the optimal r are quite uncertain. Choosing
r = 1 has certain practical benefits although it may not be necessarily an optimal choice in terms of
E (N). For example, one can directly use standard GSPs (including POC and OBF) that are offered
in software packages. On the other hand, the EMA (2007) guideline states that “Often it may not be
acceptable to stop a trial very early, despite convincing efficacy results, because insufficient data on
safety, or on secondary endpoints may be available . . . ”. For this reason, it may be advisable to choose
an r greater than the one that minimizes E (N). The lesson here is that many different considerations
dictate the choice of r.
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Table 3 Maximum and expected sample sizes for 80% power to reject both H1 and H2 for different
scenarios and boundary combinations (m = 3, α = 0.05, ρ = 0.5).

Case θ1 θ2 Boundary r = 1 r = 2 r = 3

# M E (N) M E (N) M E (N)

1 0.1 0.1 OBF-POC 803 646 772 635 742 634
2 0.1 0.1 OBF-OBF 703 592 702 593 694 600
3 0.1 0.2 OBF-POC 636 520 634 527 622 548
4 0.1 0.2 OBF-OBF 636 523 634 528 621 547
5 0.2 0.1 OBF-POC 740 519 691 500 648 507
6 0.2 0.1 OBF-OBF 636 523 634 528 621 547
7 0.2 0.2 OBF-POC 201 162 193 159 186 159
8 0.2 0.2 OBF-OBF 176 149 176 149 174 151
9 0.3 0.2 OBF-POC 188 135 176 128 165 129
10 0.3 0.2 OBF-OBF 162 135 161 135 158 139

The minimum E (N) over different choices of r is shown in bold for each case.

From Fig. 2 we see that the inflation in FWER of the adaptive GSP is rather small for practically
encountered ranges of ρ, e.g. 0.2 ≤ ρ ≤ 0.8, and occurs only over a small interval of δ1-values. Thus it
may be possible to use the adaptive GSP with its attendant power gain if we can statistically rule out
those particular combinations of ρ and δ1 by constructing a joint confidence set for these parameters.
An approach similar to the one adopted in Tamhane et al. (2012) may be followed to address this
problem.
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Appendix

Proof of Proposition 4.1. Let (Zi1, . . . , Zim) be the test statistics for testing hypothesis Hi : θi = 0 versus
an upper one-sided alternative and let (ci1, . . . , cim) be the corresponding critical boundary at level αi
(i = 1, 2) where α1 + α2 = α. Assume that H1 is false and H2 is true. Then the FWER of GSP(s) is
given by

FWER = P(Reject H2) =
m∑

s=1

P(Reject H1 @ stage s, reject H2 @ any stage)

+
m∑

s=1

P(Do not reject H1, reject H2 @ stage s).
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We will show that this FWER equals the FWER of GSP(m) procedure that is α.
Note that the second term of the above expression is the same for GSP(m) since in that case H1 is

not rejected and so no significance level is recycled to H2. So we need to show that the first term of the
above expression is the same for both GSP(s) and GSP(m). When the Z1 j are mutually independent
of the Z2 j for 1 ≤ j ≤ m, we can write each summand in the first term as

P(Reject H1 @ Stage s, reject H2 @ any stage)

= P(Reject H1 @ stage s) × P(Reject H2 using GSP(s))

= P(Reject H1 @ stage s) × α

= P(Reject H1 @ stage s) × P(Reject H2 using GSP(m))

= P(Reject H1 @ stage s, reject H2 using GSP(m)).

The third step follows because GSP(s) fully utilizes the recycled significance level and the fourth step
follows because GSP(m) also fully utilizes the recycled significance level. This concludes the proof for
the independence case. �

Proof of Proposition 4.2. Here we will assume m = 2, i.e. a two-stage GSP, to keep the notation and
proof simple. Note that, when Hi is true, (ci1, ci2) satisfy

P(Zi1 > ci1) + P(Zi1 ≤ ci1, Zi2 > ci2) = αi (i = 1, 2).

Denote the delayed recycling critical boundary for Hi using GSP(1) by (c′
i1, c′

i2), which is simply an
α-level boundary, i.e.

P(Zi1 > c′
i1) + P(Zi1 ≤ c′

i1, Zi2 > c′
i2) = α (i = 1, 2)

and denote the delayed recycling critical boundary for Hi using GSP(2) by (ci1, c
′′
i2) where c

′′
i2 is the

solution to the equation

P(Zi1 > ci1) + P(Zi1 ≤ ci1, Zi2 > c
′′
i2) = α (i = 1, 2).

Furthermore, let n j be the sample size at Stage j ( j = 1, 2). Assume that H1 is false and H2 is
true. Then Z11 ∼ N(δ1

√
t1, 1), Z12 ∼ N(δ1, 1) and Z2 j ∼ N(0, 1) where δ1 = θ1

√
n1 + n2 is the drift

parameter for H1. Note that Corr(Zi1, Zi2) = √
t1 for i = 1, 2. Denote by ρ the correlation between

the two endpoints so that Corr(Z11, Z21) = Corr(Z12, Z22) = ρ.
To calculate the type I error, we divide the event E = (Reject H2) into the following mutually

exclusive events:

E1 = (Reject H1 and H2 @ Stage 1),

E2 = (Reject H1 @ Stage 1 and H2 @ Stage 2),

E3 = (Reject H1 and H2 @ Stage 2),

E4 = (Not reject H1, reject H2 @ Stage 1),

E5 = (Not reject H1, reject H2 @ Stage 2).

Note that events E4 and E5 do not involve recycling.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



106 D. Xi and A. C. Tamhane: Allocating recycled significance levels in group sequential procedures

Denote by Pi = P(Ei) when H1 is false and H2 is true, so that FWER = P1 + P2 + P3 + P4 + P5. We
can write the following expressions.

P1 = P(Z11 > c11, Z21 > c′
21),

P2 = P(Z11 > c11, Z21 ≤ c′
21, Z22 > c′

22),

P3 = P(Z11 ≤ c11, Z21 ≤ c21, Z12 > c12, Z22 > c
′′
22),

P4 = P(Z11 ≤ c11, Z21 > c21),

P5 = P(Z11 ≤ c11, Z21 ≤ c21, Z12 ≤ c12, Z22 > c22).

Assume that ρ = 1. Then Z1 j = Z2 j + δ1
√

t j for j = 1, 2. For simplicity of notation, denote X = Z21

andY = Z22 where X andY are N(0, 1) with Corr(X,Y ) = √
t1. To find a counterexample we consider

a situation where H2 is rejected at the same stage when H1 is rejected. Therefore, we try to maximize the
probability of E1, E2, and E3. We will show that FWER > α if δ1 = c11/

√
t1. Since typically c11 ≥ c12

(e.g. the OBF or the POC boundaries), we will have δ1 > c12.

P1 = P(X > c11 − δ1
√

t1, X > c′
21) = P(X > max(0, c′

21)) = P(X > c′
21),

P2 = P(X > c11 − δ1
√

t1, X ≤ c′
21,Y > c′

22) = P(0 < X ≤ c′
21,Y > c′

22),

P3 = P(X ≤ c11 − δ1
√

t1, X ≤ c21,Y > c12 − δ1,Y > c
′′
22)

= P(X ≤ min(0, c21),Y > max(c12 − δ1, c
′′
22))

= P(X ≤ 0,Y > c
′′
22) since c12 − δ1 < 0,

P4 = P(X ≤ c11 − δ1
√

t1, X > c21) = P(c21 < X ≤ 0) = 0,

P5 = P(X ≤ c11 − δ1
√

t1, X ≤ c21,Y ≤ c12 − δ1,Y > c22)

= P(X ≤ 0, c22 < Y ≤ c12 − δ1) = 0.

Hence

FWER = P1 + P2 + P3

= P(X > c′
21) + P(0 < X ≤ c′

21,Y > c′
22) + P(X ≤ 0,Y > c′′

22)

= P(X > c′
21) + P(X ≤ c′

21,Y > c′
22) + [P(X ≤ 0,Y > c

′′
22) − P(X ≤ 0,Y > c′

22)]

> α

since (c′
21, c′

22) is an α-level boundary, so the first two terms sum to α and the term in square brackets
is > 0 because c

′′
22 < c′

22. Hence FWER is inflated when ρ = 1 and δ1 = c11/
√

t1, and by continuity
when ρ < 1 and δ1 is chosen appropriately. �
Proof of Proposition 4.3. Using the same notations, we then show that if L ≤ δ1 ≤ U , FWER = α for
ρ = 1, where L = c12 − c

′′
22 ≥ 0 and U = (c11 − c21)/

√
t1 ≥ 0. If L ≤ δ1 ≤ U then we have

P1 = P(X > c11 − δ1
√

t1, X > c′
21) = P(X > c11 − δ1

√
t1) since c21 ≥ c′

21.

P2 = P(X > c11 − δ1
√

t1, X ≤ c′
21,Y > c′

22) = P(X > c11 − δ1
√

t1, X ≤ c′
21,Y > c′

22) = 0.

P3 = P(X ≤ c11 − δ1
√

t1, X ≤ c21,Y > c12 − δ1,Y > c
′′
22) = P(X ≤ c21,Y > c

′′
22).
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P4 = P(c21 < X ≤ c11 − δ1
√

t1),

P5 = P(X ≤ c11 − δ1
√

t1, X ≤ c21,Y ≤ c12 − δ1,Y > c22) = 0.

Thus
P1 + P3 + P4 = P(X > c21) + P(X ≤ c21,Y > c

′′
22) = α. (1)

Therefore, if L ≤ δ1 ≤ U , then FWER = α for ρ = 1. �
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